
Contents

Introduction
Your First AFW Library
Templates and Styles
The Library Browser
Capturing Templates and Styles
Associating Items With a Project Framework
Adding Form, Class, and Code Templates
Adding Control, Menu, and Function Templates
Applying Styles
Adding an Application Framework
Cloning Controls, Forms, and Styles
Using Find, and Zoom
Knowledge Base

Introduction
VB AppFramework (abbreviated to AFW throughout much of this document) is a unique and powerful
add-in to the Visual Basic 4 (16 or 32 bit edition) Windows development environment that simplifies and
organizes the way you work. AFW lets you create templates from Visual Basic objects, and then allows
you add these templates to a project at any time. AFW also lets you create styles from groups of
properties, and apply these styles at any time. Finally, AFW lets you create entire application
frameworks by grouping together related templates.

AFW is extremely flexible. Whether you work alone on your Visual Basic projects, or as part of a large
corporate team, youll find collecting and using Visual Basic templates and styles is a real time-saver.

These collections of objects are saved away by AFW into libraries. Each library is actually a single
standard Microsoft Access database file. You can create your own library, purchase commercial libraries,
or share a library with co-workers.

AFW leaves you completely in control. No unexpected or automatic features are added to the Visual
Basic environment; you decide when and where to use the enhanced features AFW provides. When
youre ready, built-in wizards walk you through the process of capturing your objects, or through the steps
of adding or applying them to your Visual Basic projects.

AFW was designed to be tightly integrated with the Visual Basic environment. The terms, forms, objects,
and even toolbar buttons have been designed to make you feel right at home.

AFW was created by VB professionals for VB professionals.

This topic shows you how to set up VB AppFramework on your computer, and attach it to your Visual
Basic environment.

Contents
16 and 32 Bit Versions

Assumptions

Setting Up

Attaching to VB

Features of VB AppFramework

Product Support Services

16 and 32 Bit Versions
This document discusses the functionality of VB AppFramework. This product is shipped with both a 16
and 32 bit version. While the versions are functionally equivalent, there are some interface and usability
differences between them.

The most significant usability difference is the fact that the 16 bit version uses the Outline control to
display information in the wizards and browser, whereas the 32 bit version uses the TreeView control for
the same purpose. Throughout this document, the supporting graphics show the TreeView control. The
organization of information is the same in the Outline, but with less granularity as to the type of template,
or style that is being displayed.

The second significant difference is that the 32 bit version is implemented as an In-Process OLE server,
whereas the 16 bit version is an out-of-process OLE server. In-Process servers have significant
performance improvements over out-of-process servers. In addition, all forms within In-Process servers
are modal to VB, whereas out-of-process forms are not.

Assumptions
It is assumed throughout this document and while using AFW that you have a working knowledge of
Microsoft Windows and Visual Basic. Oftentimes VB terms are mentioned in this help file, but not
thoroughly explained. Please refer to your VB documentation for clarification of these terms.

Setting Up
VB AppFramework is an Add-In to the Visual Basic Integrated Development Environment (VBIDE), and is
not a stand alone Windows application. Nevertheless, the initial setup of AFW proceeds in the same way
as with most stand alone applications.

1. Insert the AFW disk titled Setup in your floppy disk drive.

2. Click the Start button on the task bar, then click the Run icon (Windows 95), or select Run from
the File menu in File Manager (earlier versions of Windows).

3. Type A:\SETUP16\SETUP to start the 16 bit setup program or A:\SETUP32\SETUP to start the
32 bit setup program.

4. Follow the instructions as they appear during the setup process.

The initial setup process will copy the AFW files into the directory C:\AFW for the 16 bit setup or C:\VB
AppFramework for the 32 bit setup, assuming you opted for the suggested drive and directory during
setup. It also will create two directories underneath this directory: \LIB, and \REPORT. The \LIB
directory is the default directory where your libraries are kept. The \REPORT directory contains Crystal
Reports templates. An ini file, AFW.INI, is created in your Windows directory, or the information is placed
in your system registry depending on the version of Windows you are using. Finally, entries are
automatically created in the [Add-Ins 16] and [Add-Ins 32] sections of your VB.INI file. These entries are
required for all Visual Basic aware Add-In applications.

Attaching to VB
To attach AFW to the Visual Basic IDE, you must use the Add-Ins menu to locate and mark it as a
currently active Add-In. Once activated, AFWs menu items will appear in Visual Basics Add-Ins menu,
and all features will be available for your use. Activating AFW is easy to do:

1. Select Add-In Manager from Visual Basics Add-Ins menu.

2. Locate VB AppFramework.Application in the Available Add-Ins list and click in the little box to
mark it for activation..

3. Click the OK button to complete the activation.

You can verify AFW is active by looking at Visual Basics Add-Ins menu. A main menu and several new
AFW sub-menu items will appear in this menu. Each of these menu items will be described in detail later
on. The figure shows Visual Basics Add-Ins menu after VB AppFramework has been attached.

Note Visual Basic Add-Ins remain active until you de-select them using the Add-Ins Manager, even if
you load different Visual Basic projects or reboot the computer. VB AppFramework will always be just a
click away!

VB AppFramework Menus

Features of VB AppFramework
VB AppFramework provides a mechanism for capturing Visual Basic Templates and Styles, a repository
called a Library for storing them, and a mechanism for adding or applying them to your Visual Basic
projects. The Library is a Microsoft Access database file, structured as an AFW Library. Since each
Library is a self-contained MDB file, it can easily be replicated and distributed. AFW lets you create and
populate your own Libraries and also ships with Libraries that are ready to use. Wizards help you
capture, find, and use Templates and Styles contained within these Libraries.

Tip To keep you from confusing your AFW Libraries with other Microsoft Access databases and
applications you create, AFW uses an the file extension .AFW instead of the .MDB extension normally
assigned by Access. Dont worry, though, we havent modified the Access database format in any way.

The following table summarizes the features of VB AppFramework

Feature Description
Library Browser Central tool that allows you to browse AFW libraries;

create and install libraries; report on contents of
libraries; edit template names and comments.

Capture Wizards Capture templates and styles into an AFW library;
associate custom controls, references, resources,
and files and create complete project frameworks.

Frame Wizard Add an entire application framework; collections of
forms, code modules, class modules, custom
controls, references, and resources; to a VB project;
place associated files in the project directory.

Form Wizard Add a form template to a VB project.

Control Wizard Add one or more control templates to a VB form.

Menu Wizard Add one or more menu templates to a VB form.

Class Wizard Add a class template to a VB project.

Code Wizard Add a code template to a VB project.

Function Wizard Add a complete function, or any fragment of code to
a VB code window.

Style Wizard Apply styles to forms, or controls.

Associate Custom
Controls

Associate custom controls to a project for the
purposes of creating a project framework.

Associate
References

Associate references to a project for the purposes of
creating a project framework.

Associate Resource Associate a resource file to a project for the purposes
of creating a project framework.

Associate File Associate any file to a project for the purposes of
creating a project framework.

Clone Controls and
Forms

Instantly copy one or more controls with their
methods, or create an exact copy of a form.

Clone Styles Instantly create a copy of a style and apply it to
similar objects.

Product Support Services
Semiotix Systems has worked closely with Microsoft to bring you the very best product possible. Your
comments and questions about VB AppFramework are welcome.

You may contact us by telephone at:
Product Support: (970) 339-7157
Telephone: (303) 743-1400
Fax: (303) 743-1410

Or you can write to us at:
Semiotix Systems, LLC
10620 East Bethany Drive
Aurora, CO 80014

Or you can send us e-mail at:
afw@semiotix.com
76450,3577@compuserve.com

Your First AFW Library
In this topic we will provide a step-by-step set of instructions for creating and using a new Library. We will
first create a new Project Framework in this Library and capture a Form Template, A Controls Collection,
and Menus Collection into the new Framework. We will then use our Templates by adding the Form to a
Visual Basic project, then adding the Controls Collection and Menus Collection Template to a form.
Finally, well capture a Style into the Library and apply it to the controls on a form.

You might think of this topic as the equivalent of creating a simple Hello World! application in Visual Basic.
You wont learn everything in this topic, but you will quickly form a solid foundation of your AFW
understanding.

Contents
Starting AFW

Creating a New Library

Creating a New Project

Capturing a Form Template

Capturing a Collection of Controls

Capturing a Collection of Menus

Adding the Form to a Project

Adding the Controls to the Form

Adding the Menus to the Form

Capturing a Style

Applying the Style

Starting AFW
Remember that AFW is an Add-In to the Visual Basic IDE. You start AFW by simply starting up Visual
Basic. You will need to setup the product and attach it, as described in the previous topic, but you need
only do this once. After this initial setup and attachment, AFW is always just a click away when youre
working in Visual Basic!

For this exercise, youll need to first create a new Visual Basic project and save it (use any project name
you choose). The project should have the default form titled Form1. Leave the project open.

Creating a New Library
To create a new AFW library select AppFramework + Library Browser from the Visual Basic Add-Ins
menu. The Library Browser is where you create, install, remove, delete and maintain AFW Libraries.

 Step 1
Select Library + New from the menu. The New Library dialog shown in figure below will be displayed.
This dialog lets you enter the file name for the new Library, comments to describe the Library and the
name of the author. The name, comment, author and a date and time stamp are stored in the Library,
providing useful information when you work with more than one Library.

Describing the New Library

For this exercise, enter the following:

- Library Name - Test Library

- File Name - yourpath\NewLib.afw, where yourpath is the directory you choose to store your AFW
Libraries.

- Comment - This Library will be used to test VB AppFramework features.

- Author - your own name.

This information will show up in the Library Browser to make your Library easy to identify. Click OK to
complete the creation of the new Library.

The new Library is created from a database template that was placed in your \LIB directory during the
setup process. Each new Library is seeded with a description of all standard Visual Basic controls, a set
of Default Styles (see the discussion later in this topic under Capturing a Style), and a Project Framework
entitled Public Project Framework.

Making the Library Active
 Step 2

To use a Library in the AFW Wizards, you must first make it the Active Library. To do this, highlight the
Library you have just created and select Library + Activate. This Library and all of its Templates, Styles
and Project Frameworks is now available for use.

Creating a New Project
 Step 3

Next, well create a new Project Framework called Test Project in our Library. In the Library Browser,
highlight the Library you just created in Step 1. Now select Project + New from the Browser menu. The
New Project Framework form appears. Fill in the fields to identify the new Project Framework as follows:

- Project Name - Test Project.

- Comment - any comment you want.

- Author - your name.

Click OK to create the Project Framework.

Capturing a Form Template
 Step 4

At this point, your new Library and Project Framework contain no Templates or Styles. Before we can
capture Templates or Styles, however, we need to create some objects in your active Visual Basic project
to work with.

In Form1 of your active Visual Basic project, do the following:

- Add two command buttons, labeled OK and Cancel.

- Add a text box.

- Add a label for your text box called Name.

- Set the Form1 Caption to AFW Template.

- Create a top-level File menu for the form along with the following sub-menus: New, Open, Save,
Print, and Exit. Add some simple code behind these menus, like a MessageBox command.

- Go into the code window for Form1 and add some comments to the top of the window, such as a
copyright notice and a description of the form.

- Save Form1 within Visual Basic.

We could make this form more elaborate, but the above will suffice for this exercise. Your form should
look like the following figure.

Tip Keep form templates simple, and generic. In this way they will be easy to plug into any project.
You may want to create templates for various types of tasks. You may like to design MDI children in one
way, dialogs in another way, and data entry forms a third way. Once you have a generic design for such
a task, capture it and make it as a Template so its easy to reuse.

The Sample Form Template

Make sure that Form1 is open and has the input focus. Now start the Capture Wizard by selecting
AppFramework + Capture + Form from the Visual Basic Add-ins menu. A dialog titled Capture Form
Template - Step 1 will be displayed. At this point, there should be just one Project Framework (Test
Project) and no Templates contained in the TreeView control on this dialog. The Active Library (Library:
Test Library) is noted in the caption above the TreeView. Click New to create a new Form Template. This
will bring up a dialog titled New Form Template.

Select Test Project as the Project Name, enter Test Form Template as the Template Name, a Comment of
your choice, and your name as the Author. Note that you cannot edit the Name Property field. This is
the name that you assigned to the form in Visual Basic. Your completed dialog should look like the figure
below.

Describing the Form Template

Click OK to accept your edits. A dialog titled Capture Form Template - Step 2 appears to provide
summary information about the Template you are capturing. Click Finish to perform the capture. Once
completed, a Capture Status dialog like the figure below is displayed. This dialog confirms the
successful capture and indicates that your new Template can be used by running the Form Wizard or
the Framework Wizard. Click OK to return to your work in Visual Basic.

A Successful Capture

Capturing a Collection of Controls
 Step 5

Next we will capture a collection of controls as a Template. A collection is a group of one or more
controls. Our collection for this exercise will be simple; the two command buttons: OK and Cancel.
These buttons and their associated methods are used together on many forms and thus make a logical
candidate for reuse.

On Form1, Select the OK and Cancel buttons and start the Capture Wizard by selecting AppFramework +
Capture + Controls from the Visual Basic Add-ins menu. The Capture Control Templates - Step 1 dialog
appears. As in Step 4, click New and complete the information in the New Controls Collection dialog.
You will note that the Name Property field in this dialog contains the value <all control names>. This is
because AFW doesnt yet know how many controls you are capturing. Make sure you have Test Project
selected and enter the name OK, Cancel Collection for the name of the controls collection. Click OK to
accept the edits and move to the Capture Control Templates - Step 2 dialog. Click Finish to execute the
capture. A Capture Status dialog will be displayed to confirm the successful capture.

Tip Keep the methods (i.e., the event procedures) for your Control Templates as generic as possible, or
make calls to external procedures within your methods. In this way, Control Templates can be reused
widely with little or no modifications.

Capturing a Collection of Menus
 Step 6

Lets complete our capture Templates exercises by capturing a collection of menus. Normally, creating
menus is a tedious process. AFW can save you lots of valuable time by letting you reuse menus that
have been captured into your Libraries.

Unlike forms and controls, Visual Basic doesnt provide a way for you to select menus on a form in design
time. AFW makes up for this by letting you select menus in the Capture Wizard.

Make sure that Form1 is open and has the input focus. Select AppFramework + Capture + Menus from
the Visual Basic Add-ins menu. The Capture Menu Template - Step 1 dialog appears. Click New. The
New Menu Templates dialog appears. Name the collection: File Menus and fill in the other information
on the dialog. When you are done with your edits, click OK to proceed to the Capture Menu Templates-
Step 2 dialog.

In the Step 2 dialog, you must select the menus you want to include in the current collection. You can
select any number of menus, subject to the following conditions:

1. All menus to be selected must have a root menu. That is, you cant select a sub-menu without
also selecting its parent.

2. All menu selections must be contiguous.

Select the entire menu structure. Your dialog should look like the following figure.

Selecting Menus to Capture

Click Next to proceed to the Capture Menu Templates - Step 3 dialog, then Finish to execute the capture.
A Capture Status dialog confirming the successful capture will be displayed.

Adding the Form to a Project
 Step 7

For this next exercise, lets create a new project within Visual Basic and save it. You can give it any
name you want. Leave the project open. Now lets use the Templates we created in Steps 4, 5 and 6
above. Well start by adding a Form Template to your project.

Select AppFramework + Add + Form from the Visual Basic Add-Ins menu to start the Form Wizard. This
Wizard walks you through the steps required to add a Form Template from a Library into a Visual Basic
project.

If you followed the steps above, a Project Framework called Test Project will be displayed in the TreeView
on the Add Form - Step 1 dialog. (If you had other Project Frameworks defined in the Active Library, they
would also be displayed here.) Expand the Project Framework node by clicking on the + symbol. You
can now see all Form Templates contained within the Framework; in this case, the one Template called
Test Form Template. Select this Template. Note that the type of item selected, its author name and last
data modified are displayed in the status bar under the TreeView.

Click Next to proceed to the Add Form - Step 2 dialog. At this point, you can change the name of the
Visual Basic form and its corresponding file before adding it to your project window. For this exercise,
well use the defaults provided by AFW. Click Finish to execute the add process. The form is added to
your Visual Basic project window and a dialog confirming your successful add is displayed.

Open the form now in Visual Basic. You can see that its an exact duplicate of the original.

This is how easy it is to work with Form Templates. By now youre probably already thinking of many
ideas for Form Templates of your own.

Next, lets create a new form and add the Control and Menu Templates that we captured earlier to it.

Adding the Controls to a Form
 Step 8

For this exercise, add a new form to your active Visual Basic project, save it (using any name you
choose), and make sure it has the input focus. Run the Control Wizard by selecting AppFramework + Add
+ Controls from the Visual Basic Add-ins menu.

As in Step 7, expand the Test Project Framework in the TreeView on the Add Controls - Step 1 dialog to
display the Controls Collections included within. Open the Collection called OK, Cancel Collection to
view the individual Templates that make-up the Collection.

The Control Wizard lets you add either an entire Controls Collection or an individual Control Template to
your form. To add an individual Template, select it from within the TreeView and proceed. In this case,
however, well add the entire Controls Collection.

Select the OK, Cancel Collection in the TreeView and click Next. The Add Controls - Step 2 dialog
itemizes the Control Templates to be added. Click Finish to execute the add. An Add Controls status
dialog confirms the successful add. The new controls now appear on your form in exactly the same
relationship as they appeared on the form from which they were captured. Check the code window of
your form to confirm that the methods for these controls are also present.

Leave the active form open so we can add a collection of menus to it next.

Adding the Menus to a Form
 Step 9

Make sure that your new form has the input focus and run the Menu Wizard by selecting AppFramework
+ Add + Menus from the Visual Basic Add-ins menu. In the TreeView on the Add Menus - Step 1 dialog,
open the Test Project Framework to display the available Menus Collections. Open the File Menus
Collection to view the individual Menu Templates that make-up this collection. To add a single Template,
you would select it and proceed to the finish. For this exercise, however, well add the entire collection of
menus. Select the File Menus Collection in the TreeView and click Next. The Add Menus - Step 2
dialog confirms the list of menus to be added. Click Finish to execute the add and OK in the Add Menus
status dialog to return to Visual Basic .

As you can see, its easy to create and use all kinds of Templates with AFW. Your Libraries grow as you
design more and more Templates and add them to your Library. Each new task, in turn, becomes that
much easier. In addition, you can start with the Libraries shipped with AFW. Its not hard to see why
AFW actually grows in value the more you use it!

Capturing a Style
Default Styles

A CommandButton Style

Default Styles
Before we begin the process of capturing and applying a Style, its helpful to know something about
Default Styles. Default Styles are collections of properties associated with each form and control class
within a Library. When you capture a Style from an object, AFW refers to the Default Style for the
applicable object class to determine which properties to include in the Style. Without Default Styles, youd
have to itemize all the properties you want each time you capture a Style.

As you capture Styles, however, AFW lets you add or remove properties from the Default Styles collection
before finishing the capture. In this way, you can specify exactly which properties to include in each
Style you create. You can create multiple Styles for each object class and each of these can include
different sets of properties, if you want.

When you create new Libraries or use the ones shipped with AFW, Default Styles for all standard object
classes in Visual Basic are already assigned. You can easily change these using the Library Browser. For
more discussion of Default Styles, refer to the Topic - Templates and Styles.

A CommandButton Style
 Step 10

Before we can capture a Style, we first need to create or select an object whose properties are set as we
want them to appear in the Style.

On your Form1, lets make sure that one of the command buttons, the OK button, has the desired
properties. For a Windows 95 look, set the properties as follows: Height - 405, Width - 1125, Caption -
OK, Default - True, and Name - cmdOK.

The next few steps will save a set of this buttons properties, including its Caption, Left, and Top
properties, as a Style.

Select the OK button. Start the Capture Wizard by selecting AppFramework + Capture + Style from the
Visual Basic Add-Ins menu. The Capture Control Style - Step 1 dialog appears. Click New. A New
<Control Class> Style dialog like that in the figure below appears.

Note Styles are not associated with a particular Project Framework; rather, they are global to a Library.
Consequently, you dont need to specify a Project Name in the editor when working with Styles.

Naming the CommandButton Style

Accept the default name here and add any comments you desire. Specify yourself as the author and
click OK. The Wizard takes you to the Capture Control Style - Step 2 dialog. For this exercise, lets
change the set of properties we will be capturing. Remember: if you dont change this set, you will
capture the properties contained in the Default Style for this control class in this Library. Click the Styles
button to capture a custom set of properties. The Define Custom Style dialog is displayed.

Select FontName in the right side list box and click the <- Add button. Repeat this for FontSize and
FontBold. The list of properties youll be capturing appears in the left list box, like that shown below.

Creating a Custom Style

Click OK to accept the custom property set for this Style. You are returned to the Capture Control Style -
Step 2 dialog. Click Finish. The capture will be executed and a Capture Status dialog confirming the
successful capture will be displayed.

Applying the Style
 Step 11

Unlike Templates, which add new objects to your Visual Basic projects and forms, Styles are applied to
existing objects. The following steps describe how to apply the New CommandButton Style that you just
captured in Step 10 above.

First, create two more command buttons on Form1. To get the full impact of using Styles, set some
unusual sizes and fonts on these buttons.

Note A Style must be captured from a single control or form, but can be applied to any number of similar
controls at the same time.

Select your two new command buttons to let AFW know that you want to apply a Style to these objects.
Start the Style Wizard by selecting AppFramework + Apply Styles from the Visual Basic Add-Ins menu.
This Wizard walks you through the steps needed to apply a Style from a Library to the selected objects.

In the TreeView that appears on the Apply Style - Step 1 dialog, you will see folders for Styles grouped by
control class. Within each folder are the actual Styles listed by name. Open the CommandButton
Styles folder by pressing the + sign to the left of the folder. Now select the folder name New
CommandButton Style. Open it to view the comment and click the Next button.

The Apply Style - Step 2 dialog appears, showing a list of the properties included in the selected Style
and their values. Click Finish to apply the Style. Your command buttons will now have all of the same
properties that were included in the New CommandButton Style. Remember that the only properties
applied your command buttons were those included in the New CommandButton Style. No other
properties were affected.

As you can imagine, Styles are a very powerful part of VB AppFramework. They make it easy to
standardize the look and feel of your applications. Try experimenting with Styles of your own.

Tip Your Styles arent limited to visible properties like color, font, height and width. Try creating other
categories of Styles like database Styles or help topic Styles.

This completes your first trial run with VB AppFramework. As you can see, its pretty easy. The following
topics describe each of the features of AFW in more detail.

Templates and Styles
This topic defines Templates and Styles, how they relate to Visual Basic, and how they can be used. You
may be familiar with Templates and Styles from working with other products like Microsoft Word or Excel.
AFW Templates and Styles are similar in concept, but actually easier to define, organize and use.

Contents
What is a Template?

Kinds of Templates

What is a Style?

What is a Template?
A Template is a Visual Basic object definition that is stored in a Library. The term Template is used to
promote the idea that these objects are intended to be generic application components that can be used
over and over.

There are a couple of different approaches to designing and using Templates:

1. You can design and capture completed components from working applications. When you add
them back to a Visual Basic project, theyll work just like they did before (provided, of course, that
there are no unfulfilled dependencies on components external to your template).

2. You can design and capture components in near-working order, with code stubbed out to fill in the
blanks and go. This approach can sometimes require more planning, but usually produces
templates that are easier to reuse in more situations.

The beauty of AFW is that it lets you work either way and organize your work in whatever way best suits
your needs.

Tip Placing directives in the code behind your Templates will make it easier for others to reuse your
Templates efficiently.

Templates correspond directly to Visual Basic objects, with the exception of Functions. To make this
clearer, lets take a look at the Visual Basic programming environment and how its objects relate to each
other and the corresponding AFW Templates.

AFW provides two ways that you can work with Templates:

1. You can permanently store a Template using the Capture Wizard and apply it at any time using
the applicable Add Wizards.

2. You can temporarily copy and paste Templates while working in a project using the Clone Form or
Clone Controls tool. In this case, Templates are never saved into your Library. Cloning is
discussed in detail in Chapter 11 - Cloning Forms, Controls and Styles.

VB Object VB
Container

AFW Template AFW Container

Form Project Form Template Project Template

Code Module Project Code Template Project Template

Class Module Project Class Template Project Template

Control Form Control Templates Controls Collection

Menu Form Menu Template Menus Collection

Proc Code Window Function Template Library

Declaration Code Window Function Template Library

Comment
Block

Code Window Function Template Library

Properties Control, or
Form

Style Library

Kinds of Templates
As shown in the previous table, Form, Code and Class Templates correspond directly to forms, code
modules, and class modules within the Visual Basic IDE. In fact, the actual text files created by Visual
Basic for these components are captured into your AFW Library (the corresponding FRX files are also
captured for forms). This is why you must save your files in Visual Basic prior to performing a capture.

Control and Menu Templates are handled differently. For these Templates, the Visual Basic object is
queried and a definition of the object and its properties are stored in your Library. The methods for these
Templates are extracted from the corresponding text file because the Visual Basic IDE does not expose
them as separate objects through the Add-ins interface.

Functions are unique objects to AFW, but still relate to things youre familiar with in Visual Basic. A
Function is any section of code found in the Visual Basic code window. It can be an entire procedure, a
declaration, a comment block, or any other contiguous code segment you want to reuse. The figure
below shows a code block that you might want to place at the beginning of every class module, for
example.

'---

' Copyright 1995 Semiotix Systems, LLC
'---
' <Class> pertains to capture related functions
'---

Option Explicit

'<Class>---
Private Const semClassID As Long = clsidCaptureWizard
Public Application As String
Public Name As String
'<EndClass>--

A Code Block for a Class Module

What is a Style?
A Style is a collection of property settings for a Visual Basic form or control. AFW provides a mechanism
for you to automatically capture these settings from one object and re-apply them to other objects of the
same class. Styles pertain only to Visual Basic forms and controls.

AFW lets you determine which properties are to be included in a particular Style; during the capture
process and in the Library Browser. Every Style can include different sets of properties if you want, or
you can have multiple Styles that include the same properties but with different values.

You may be tempted to associate Styles only with visible properties like color, font and size. In AFW,
however, Styles can pertain to any collection of properties. This makes it possible to create such Styles
as Database Style or Help Topic Style.

The ability to create and apply Styles is a very powerful part of AFW. Styles can be applied to enforce
user interface consistency when working with teams of developers, with multiple projects, or with forms
and controls within the same project. You can apply Styles as you first add objects to a project or later to
clean up non-conforming or incomplete work.

AFW provides two ways that you can work with Styles:

1. You can permanently store a Style using the Capture Wizard and apply it at any time using the
Style Wizard.

2. You can temporarily copy and paste Styles while working in a project using the Clone Styles tool.
In this case, Styles are never saved into your Library. Cloning is discussed in detail in the topic -
Cloning Forms, Controls and Styles. Cloning a Style is similar to using the Format Painter in
Microsoft Word and Excel.

The Default Style
Each Style in AFW relates to a particular class of control or form (for simplicity sake, we refer to these as
object classes below). Each Library shipped with AFW and each new Library you create is seeded with
definitions for the standard object classes that ship with Visual Basic. As you capture new objects (such
as third party custom controls), the attributes of those object classes are automatically added to your
Library.

In addition to the initial definition of each object class, AFW also stores a collection of properties known as
the Default Style for each class. The Default Style serves two purposes:

1. It seeds the properties collection for each new Style you capture. All Styles you capture start
with the set of properties defined in the Default Style. You can add or remove properties from
this set in the last step of the Capture Wizard if you want your Style to include a different set of
properties.

2. It is the properties collection that is used by Clone Styles tool. When you copy and paste Styles
using the Clone Styles tool, the list of properties captured is derived from the Default Style for that
object class.

Note You can change the Default Styles at any time. Remember, though, that when you change
Default Styles, you are only changing them for one Library at a time.

To change the Default Style, select Library + Default Styles from the menus in the Library Browser. The
Define Default Styles dialog is displayed with two outlines. The left outline lists all object classes found in
the Active Library. Expanding any object class in the list reveals its Default Style properties. The right
outline lists all properties for the selected object class. You can add or remove properties to the Default
Style for any class using the appropriate buttons on the form.

Defining Default Styles

Adding Controls to a Library
The Add new control button under the left outline of the Define Default Styles form allows you to add new
object classes to your Library, such as 3rd party custom controls. When you add a new object class, you
add the definition for that control including its required custom control reference and all of its properties.

Note This function is provided to manually add object classes to your Library. This is not a required
step because new object class definitions are automatically added by AFW to the Active Library during the
capture process if the captured object is new to the Library.

Updating Control Properties
The Update all properties button under the right outline on the Define Default Styles form allows you to
update the definition of each object class. This may be needed, for example, when a custom control is
updated to a new version and the vendor has changed its properties in the new version.

VB AppFramework does not update control class definitions each time you capture a control instance. For
performance reasons, this is done only the first time that a control class is seen by AFW. By selecting an
instance of the affected class in your Visual Basic environment and pressing Update all properties button,
your Library will be updated with a current set of properties. The new set of properties is reflected in the
right outline.

If you notice that the set of properties listed in the right outline is incorrect or out-dated, you should
perform this function. This can happen if new versions of custom controls are installed on your system
after a prior version has been captured into the Library.

The Library Browser
The Library Browser helps you manage your VB AppFramework Libraries. You can use it to:

- Browse the contents of Libraries and select the Active Library;

- Create, install, remove, compact and repair Libraries;

- Manage Project Frameworks;

- Edit and delete Templates

- Report on Libraries

This topic discusses the AFW Library and the Library Browser; what they are and how to use them. If you
want a more technical perspective of an AFW Library, see the VB AppFramework Knowledge Base help
file that is placed on your system when you set up AFW.

Contents
What is a Library?

AFW Libraries

The Active Library

Using the Browser

Reporting

What is a Library?
A Library is the repository for reusable Templates and Styles that you capture using AFW. Each Library
is constructed as a standard MS Access 2.0 database file. AFW automatically creates and updates
these databases, so you normally dont have to worry about their exact contents or structure. The
standard database format, however, lets you view, edit, and report on your Libraries using external
applications like Microsoft Access.

Each AFW Library contains one or more Project Frameworks and collections of Styles and Function
Templates. Each Project Framework, in turn, is a collection of individual Templates, including form,
control, menu, class module and code module Templates. These are described further in the proceeding
topic.

Visual Basic projects are comprised of forms, class modules, and code modules. AFW further breaks
these objects into sub objects, each stored as individual entities in the Library. A Form Template
captures an entire form, including its controls and methods. A Control Template captures an entire
control, including all its properties and methods. A class or code module Template captures all code
contained in these modules.

AFW Libraries
The Startup Library

The Template Library

Professional Libraries

Your Libraries

The Startup Library
This Library is a sampler that is included with the product. It contains some Functions, Styles, controls,
and menus, as well as several Project Frameworks.

The Template Library
This Library is a database template used to create new Libraries. When you create a new Library in
AFW, you are actually making a copy of the Template Library file. The Template Library is reserved and
cannot be used for capturing new Templates and Styles.

Professional Libraries
Several professionally developed Libraries of Templates and Styles are available from Semiotix. Using
them will increase your productivity by eliminating the need to create your own Templates for many
common tasks. The MDI framework, for example, contains a collection of Templates that comprise a
complete MDI application. Menus, code, child forms, tabbed property sheets; they are all available and
ready to use! You can insert this entire framework into your Visual Basic application in just one step,
saving many hours of work.

As many developers and companies begin working with AFW, we anticipate thatother exciting new
Libraries will become available from Semiotix and other third parties.

Your Libraries
AFW makes it easy to develop and reuse your own application components and your own style of
programming. For instance, you can quickly add a standard About box to your Library or your own
combinations and styles of controls, such as the sizing and placement of command buttons. Now, every
time you want to add a pair of OK-Cancel buttons to a form, you can let AFW reduce the task to a few
mouse clicks.

As you gain experience with AFW, youll discover many new ways to help with repetitive programming
tasks. Now its easy to capture the professional look and feel of that perfect form, and apply it to all your
applications!

Instead of distributing printed programming and style guidelines throughout an organization, AFW lets you
send a Library to all parties involved or share a Library on a network server. Each developer can quickly
add standard Templates and apply Styles to achieve a consistent, corporate-wide look, architecture and
programming style among all applications. The consistent and professional touch youve been seeking for
all your Visual Basic applications will finally be within reach.

The Active Library
 To use a Library in AFW, you must make it the Active Library. This is done by highlighting the desired
Library in the Library Browser and selecting Library + Activate from the browser menu.

For convenient reference, the Active Library is noted in status box above the TreeView control in Step 1 of
all the Wizards . The Active Library is also referenced at all times when working in the Library Browser.

The Active Library in the Wizards

Using the Browser
Selecting AppFramework + Library Browser from the Visual Basic Add-ins menu takes you to the Library
Browser. This form is used to maintain AFW Libraries. The following figure shows some of the features
of the Browser.

The Library Browser

To view items in any Library, simply expand the TreeView to the desired level of detail. You may notice a
slight delay as this expansion takes place. This is a result of AFW going out and querying the Library
database.

Installing a Library
 A Library must be installed in the browser before it can be used. This feature is provided so that
Libraries which have been developed somewhere elseperhaps by another development teamcan be
used. To install a Library, select Library + Install from the Library Browser menus, navigate to the desired
Library file, and click OK. The Library remains in the list until it is removed. You can have up to 20
Libraries installed at any one time.

Removing a Library
If you no longer want to use a particular Library, you can remove it. This does NOT delete the Library
database file from your system, but merely removes a reference to it in the AFW Library Browser.

To remove a Library from the Browser, select it in the TreeView and choose Library + Remove from the
Library Browser menus. If you want to delete the Library database file from your system, you can use the
standard tools or utilities provided with your operating system.

Compacting and Repairing Libraries
 Its a good idea to compact your Libraries every so often to free up unused space. This is done by
selecting the Library and choosing Library + Compact from the menus. You can compact any Library,
including the active one. AFW will close the Active Library and then re-open it after compacting.

If you receive errors when using a Library, you may need to repair it. This is done by selecting the Library
in the TreeView, and choosing Library + Repair from the Library Browser menus. It is good practice to
compact a Library once it has been repaired.

Reporting
AFW ships with six pre-formatted reports. These reports provide another way to view the data contained
within your Libraries. They are also useful for auditing and documenting Libraries.

Reporting on your Libraries is either a two or three step process:

1. Select the desired report by checking it on the menu.

2. Set a filter (optional).

3. Preview the report.

To choose the report to run, select one of the menu items 1-6 located under the Reports menu in the
Library Browser. If you want to filter the contents of a report, select the menu item Report + Set Filter.
Note that the currently set filter is listed directly below the Set Filter menu item. The filter choices will
vary, depending on the report that is selected. The figure below shows a filter being set to report only on
a particular Project Framework. If the first item in the combo box is <None>, then no filter will be used
(i.e. in this case, all Project Frameworks will be included in the report).

Setting a Project Filter

Once a filter has been set, it will appear in the menu item directly below the Set Filter item.

The Current Filter

Select the menu item Report + Preview to run the selected report. Once in Crystal Reports, you will
have a number of reporting options available such as printing the report or exporting it to various formats
and destinations. Refer to the Crystal Reports documentation included in Visual Basic for complete
descriptions of these features.

Note AFWs built-in reports were developed with the Crystal Report designer that comes with Visual
Basic. The individual report templates can be found in the Reports directory under the directory where
AFW is installed.

Capturing Templates and Styles
The Capture Wizards allow you to populate Libraries with Templates and Styles of your own design.
These wizards are accessible through the AFW Capture menus. The process of creating Templates and
Styles is always done within Visual Basic. Once youve designed (or selected) an object that will serve as
the basis for a Template or Style, the Capture Wizard provides a step-by-step approach for getting it into a
Library.

The Capture Wizard lets you create new Templates and Styles or replace existing ones. If you need to
edit information contained in an existing Template, such as a comment or author name, or if you need to
delete a Template, you must do so in the Library Browser.

This topic describes the capture process in general. If you want to try a working exercise of this Wizard
in action, see the topic - Your First AFW Library.

Contents
Overview of the Capture Process

Capturing Forms

Capturing Class Modules

Capturing Code Modules

Capturing Controls

Capturing Menus

Capturing Functions

Capturing Styles

Overview of the Capture Process
The AFW Capture Wizards interact with the Visual Basic IDE to capture definitions of Visual Basic objects
(Templates) and collections of their property settings (Styles) into your Active Library. They do not alter
your original Visual Basic projects or the objects contained in them in any way.

Once captured, any of your Styles and Templates can be used in any Visual Basic project, anytime,
simply by running the applicable Add or Apply Wizard.

The general process for capturing Templates and Styles is the same, regardless of what you are
capturing:

1. Design the object(s) that will serve as the basis for your Template or Style in Visual Basic, or open
a project that contains the object(s) you need.

2. Select the Visual Basic object(s) you want to capture.

3. Start the appropriate Wizard from the AFW Capture or Associate menus.

4. Click New, or highlight the Template or Style to replace and click Replace.

5. Provide a name for the Template or Style and add comments and an author name, if you want.

6. Click Finish to complete the capture.

7. Depending on the type of object you are capturing, there may be a few extra steps that well
discuss below, but the process remains basically as outlined above. Its that simple. There are no
cumbersome file management, directory organization or other awkward processes to follow, and
you wont need special training to be productive with AFW right out of the box.

Capturing Forms

This section discusses the process of capturing a Form Template.

As in any capture process, you must have the desired object selected in the Visual Basic design
environment before proceeding. In this case, the object will be a Visual Basic form.

To capture a form, proceed as follows:

Select a form in your active Visual Basic project, then Select AppFramework + Capture + Form from the
Visual Basic Add-ins menu. The Capture Form Template - Step 1 dialog will be displayed.

At this point, VB AppFramework will query the Visual Basic IDE to determine what type of object is
selected. If the type of object you selected isnt consistent with your AFW menu selection, youll get an
error message to this effect and will have to restart the capture process.

Capturing a Form Template

The Step 1 dialog gives you the option of creating a new Template or replacing an existing one, if any are
listed. To create a new Template, click New. To replace an existing Template, select it in the outline and
click Replace.

The New/Replace Form Template dialog will now be displayed. Its data fields will be seeded with the
following information:

- Project Name - if you are creating a new Template, the Framework you navigated to in the Step 1
dialog or the first Framework listed in the TreeView if you selected nothing; or if you are replacing a
Template, the parent Framework of the Template you selected for replacement.

- Template Name - if you are creating a new Template, a concatenation of the Name property of the
selected form and the word Template; or if you are replacing a Template, the existing name of the
Template being replaced.

- Name Property - the Name property of the selected form, as obtained from Visual Basic (this is
not editable).

- Comment - if you are creating a new Template, nothing; or if you are replacing a Template, the
comment (if any) previously specified for that Template.

- Author - if you are creating a new Template, the author name from your most recent capture or
from the Library if you have not captured anything in this session; or if you are replacing a
Template, the author name (if any) specified previously for that Template.

As you move from field to field, the hints area on the bottom of the form tells you whether each field is
optional or required and provides other information about the field.

Capture Form Template Editor

To select the Project Framework with which this Template will be associated, use the Framework Name
combo box. If you want to capture this Template under a new Project Framework that is not listed, you
must cancel out of the current capture, add the Project Framework in the Library Browser, and restart the
capture. You must complete all required information before clicking OK to proceed to the Capture Form
Template - Step 2 dialog.

Note You cannot change the Name Property of a Form, Code, or Class Template in the New <object
type>Template dialog. The value of Name Property is the object name as it appears in your Visual Basic
project.

The Step 2 dialog recaps your Form Template name, comments, and other information. You cannot edit
the information here. If you need to edit the data, you can click Back to return to the previous step.
Click Finish to complete the capture. Your Visual Basic form file and FRX file (if any) will be added in
their entirety to the Active Library. Your Form Template is now permanently stored and ready to use at
any time using the Form Wizard.

Note If the form you wish to capture has custom controls on it, you must add the applicable references
to your project before the Form Template can be added.

Capture Form Summary and Finish

 Once a successful capture is complete, the Capture Status dialog shown in the next figure will be
displayed. In this dialog, the applicable Library, Project Framework and Template names are noted along
with a reminder that this Template can be added back to any Visual Basic project using either the Form
Wizard (to add the Form Template individually) or the Framework Wizard (to add the Form Template as
part of an entire Project Framework).

A Successful Capture

Capturing Class Modules

 This section discusses the process of capturing class modules as Class Templates. This process is
identical to that for capturing forms, except that you would first highlight a class module in your Visual
Basic project window and then select AppFramework + Capture + Class Module from the Visual Basic
Add-ins menu. Refer to the Capturing Forms section above for complete details on this process.

Capturing Code Modules

 This section discusses the process of capturing code modules as Code Templates. This process is
identical to that for capturing forms, except that you would first highlight a code module in your Visual
Basic project window and then select AppFramework + Capture + Code Module from the Visual Basic
Add-ins menu. Refer to the Capturing Forms section above for complete details on this process.

Capturing Controls

AFW lets you capture a single control or logically-related group of controls using the Capture Wizard. All
controls you capture in AFW are stored as a collection. When you capture a single control, you are simply
capturing a collection of one.

When you capture controls, you are capturing their definition in Visual Basic, including any required
custom control references, all their property settings and all methods relating to them. Furthermore, all
controls in a collection maintain their relative positions and relationships to each other, just as they
appeared on the Visual Basic form from which they were captured.

To capture controls, proceed as follows:

1. Within Visual Basic, highlight a control or group of controls on a form in design mode and start the
Capture Wizard by selecting AppFramework + Capture + Controls from the Visual Basic Add-ins
menu. The Capture Controls Template - Step 1 dialog will be displayed.

2. Click New for a new collection, or highlight an existing collection in the TreeView and click
Replace. The New/Replace Controls Collection dialog shown in the figure below will now be
displayed.

3. This dialog allows you to associate the controls collection with a particular project, and optionally
to provide a comment and author. At this point, AFW doesnt know exactly which controls are
selected because the selected controls might be containers for other controls. For this reason,
the Name Property field shows that <all control names> will be captured. Complete the required
and optional information, then click OK. The Capture Control Templates - Step 2 dialog will be
displayed.

Click Finish. The Capture Status dialog confirming your successful capture and reminding you how you
can use your controls collection is displayed. Click OK to return to your work in Visual Basic.

New Controls Dialog

Note Due to a limitation in the Visual Basic IDE, methods for the controls you are capturing must be
retrieved from the physical file associated their parent form. For this reason, you must save the form
before you capture controls. Also: some controls that contain collections of controls such as a the Tab
control or TreeView cannot be captured properly.

During the capture process, AFW may ask you to identify a custom control. This request is made when
AFW finds a control class that hasnt yet been defined in the Active Library. When you see the Identify
Control dialog select the name of the VBX, or OCX that is required to use this control in your project.
This step is required only once for each Library in which the control is captured.

Identify Control Dialog

Note When you add a control to a VB form that requires a VBX/OCX Reference, AFW automatically
adds the Custom Control Reference to your project before it adds the control.

Capturing Menus

You can capture a single menu or a group of menus using the Capture Wizard. All captured menus are
stored together by AFW as a collection. When you capture a menu, you are capturing the definition of
the menu including all of its property settings, its methods, and the relationship of each menu to others
in the collection.

Unlike other Templates, Visual Basic provides no way for you to select menus on a form in design time,
so AFW includes a menu selection screen in the Capture Wizard.

To capture menus, proceed as follows:

1. Open a form containing the menus you wish to capture in design time and make sure the form
has the input focus.

2. Start the Capture Wizard by selecting AppFramework + Capture + Menus from the VB Add-ins
menu. The Capture Menu Templates - Step 1 dialog will be displayed.

3. Click New to create a new menu collection, or navigate to the applicable Framework and highlight
an existing menu collection and click Replace. The New/Replace Menu Templates dialog will
now be displayed.

4. Enter the required Framework Name and Template Name, any optional information, and click OK.
The Capture Menu Templates - Step 2 dialog will now be displayed. This is where you select the
menus to be captured.

5. The outline in the Step 2 dialog lets you select multiple items. Select all the menus that you
would like to capture into the current collection, then click Next. The Capture Menu Templates -
Step 3 dialog will be displayed. Click Finish to complete the capture. The Capture Status dialog
confirming your successful capture and reminding you how to use your Menu Templates is
displayed.

Click OK to return to your work in Visual Basic.

Select Menus to Capture

Note You cannot select a sub-menu without selecting its corresponding parent and multiple menu
selections must be contiguous.

Capturing Functions

A Function Template in AFW is any piece of code obtained from a Visual Basic code window. This could
be an entire procedure, a declaration or group of declarations, a comment block, or any other contiguous
code segment you want to place in a Library for reuse.

To capture a Function, proceed as follows:

1. Navigate to the desired code block in your Visual Basic environment, select the block and copy it
to the clipboard.

2. Bring up the Capture Wizard by selecting AppFramework + Capture + Function from the Visual
Basic Add-ins menu. The Capture Function - Step 1 dialog will be displayed.

3. To create a new Function, Click New. To replace an existing Function, navigate to an existing
Function in the TreeView, highlight it and click Replace. The New/Replace Function dialog is
displayed.

4. Enter a Template Name, fill in the Comment and Author fields if you want, and click OK. The
Capture Function - Step 2 dialog will be displayed.

5. Make sure that you are tabbed to the Function page of the dialog. You can see that AFW has
automatically pasted the code you just copied to the clipboard into the text box. At this point, you
can edit the code if you want before saving it into the Library. You can also paste additional text
into the window using the Paste button located above the text box. This feature is provided so
you can optionally copy and paste in additional text from Notepad or another source outside of
Visual Basic before saving your Function. (Be careful not to click on Paste before refreshing the
clipboard contents from another source. If you do so, youll duplicate the same text in your
Function.

6. Tab to the Category page of the dialog to assign the Function to a category. Select an existing
category under which you want to group this Function or click Add to create a new category.

7. You can also delete a Category in this dialog. If the Category contains existing Functions, you
will receive a warning that deleting the Category will cause all of the Functions contained within
it to also be deleted from the Active Library and be given the option of canceling the delete. You
should therefore exercise extreme caution when deleting Categories which contain existing
Functions in them. This is particularly true when you are sharing a Library with others.

Click Next to proceed to the Capture Function - Step 3 dialog, then click Finish to complete the Function
capture. A Capture Status dialog is displayed confirming your successful capture and reminding you that
you can use the Function Wizard to add Functions back to any Visual Basic code window. Click OK to
return to your work in Visual Basic.

Assigning a Function to a Category

Tip Youll probably accumulate many Function Templates as you work with AFW. Grouping Functions
into categories makes them easier to find when you need to add them to projects.

Capturing Styles

To capture a Style, you must first design a Visual Basic form or control with the desired property settings.
Once youve done so, you can capture these settings as a Style.

Note A Style pertains to a particular class of control or form. You can only select a single Visual Basic
object to use as the Style example. Styles can, however, be applied to multiple objects of the same
class.

To capture a Style, proceed as follows:

1. Select the form or control in Visual Basic which will serve as the basis for your Style. The object
class noted in the Visual Basic property window is object class for which AFW assumes you are
capturing the current Style.

2. Start the Capture Wizard by selecting AppFramework + Capture + Style from the Visual Basic
Add-ins menu. As in Visual Basic, if you have not selected a control, then AFW assumes that you
meant to select the form. The Capture Form/Control Style - Step 1 dialog is displayed.

3. Click New for a new Style or highlight an existing Style in the TreeView and click Replace. The
New/Replace <object class> Style dialog is displayed. Enter a Style Name and the optional
Comment and Author data, if you want. Click OK. The Capture Form/Control Style - Step 2
dialog is displayed.

4. The Step 2 dialog for capturing Styles is almost identical to that for capturing Templates, with one
exception: an additional Styles button is displayed. Click this button to override the Default Style
properties collection and define a custom set of properties for this Style. If you do so, the
Custom Style dialog appears. The left outline displays a list of properties for this Style containing
the following items:

- If you are replacing a Style, the properties included in the Style you are replacing.

- If you are creating a new Style, the properties included in the Default Style for the selected
form or controls object class.

5. The right outline lists all properties for the selected form or controls object class. By adding or
removing properties from the left outline, you can customize your Style. Click OK to accept your
changes. You are returned to the Step 2 dialog.

6. Click Finish to execute the capture. A Capture Status dialog is displayed to confirm your
successful capture and remind you that you can apply your Style to any object(s) of the same
class using the Apply Style Wizard.

Note Picture and icon properties cannot be included as part of a Style.

Associating Items With a Project Framework
The Associate Wizards in AFW allow you to associate items with Project Frameworks. The reason for
creating associations is to allow you to build Project Frameworks that include all custom control
references, OLE object references, resource files and even external documentation files you might need
to work on a project.

When you lay out a Project Framework that contains these associations into a Visual Basic project, AFW
not only adds all Templates contained within the Framework to your project, but also sets the applicable
custom control and OLE object references in your project, adds a resource file (if included in the
Framework), and copies external files like bitmaps and technical documents to your project directly.

The process of associating items with Frameworks is very similar to that of capturing Templates.

Items Associated with a Project

Contents
Associating Custom Controls

Associating References

Associating a Resource File

Associating Files

Associating Custom Controls
To use custom controls in a Visual Basic project, you must first reference them in the project. This is
normally done in Custom Controls dialog that is accessed by selecting Tools + Custom Controls from the
Visual Basic menu.

To make working with Project Frameworks easier, AFW lets you associate custom control references with
them. When you lay out a Framework into a Visual Basic project, AFW will automatically set the required
custom control references for you.

To associate custom controls with a Project Framework, do the following:

1. Select AppFramework + Associate + Custom Controls from the Visual Basic Add-ins menu. The
Associate Custom Controls - Step 1 dialog is displayed.

2. Press New to create a new association or highlight an existing Association in the TreeView and
click Replace. The New/Replace Custom Controls Association dialog is displayed.

3. Select the Project Framework with which you want to create an Association. If you are creating a
new Association, then select one or more Custom Control Names from the Custom Control
Names list box to be associated. You can specify a Comment and an Author for each custom
control you select. If you are replacing an existing Association, you can edit the data only for the
single custom control selected in Step 1. When you have finished your edits, click Next.

Click Finish. A Capture Status dialog appears to confirm your choices. Click OK to return to your work in
Visual Basic.

Selecting the Controls to Associate

Note AFW allows you to associate custom controls that are currently referenced in the active Visual
Basic project. This association does not violate custom control licenses because only the registration ID
is stored, not the executable files.

Associating References
Visual Basic lets you incorporate OLE objects, like Excel spreadsheet components or other OLE servers
you may have designed in Visual Basic or Visual C++ into your applications. To do this, however, you
must first reference these objects in your Visual Basic project. This is normally done in the References
dialog that is accessed by selecting Tools + References from the Visual Basic menu.

AFW lets you associate OLE objects with a Project Framework so that, when you lay out the Framework
out in a Visual Basic project, any required OLE references are automatically set for you.

To associate an OLE object (or object library) with a Project Framework, proceed as follows:

1. Select AppFramework + Associate + References from the Add-Ins menu. The Associate
References - Step 1 dialog is displayed.

2. Select New to create a new association or highlight an existing Association in the TreeView and
click Replace. The New/Replace References Collection dialog is displayed.

3. Select the Project Framework with which you want to create an Association. If you are creating
a new Association, then select one or more Reference Names from the Reference Names list box
to be associated. You can specify a Comment and an Author for each Reference you select. If
you are replacing an existing Association, you can edit the data only for the single reference
selected in Step 1. When you have finished your edits, click Next. The Associate References -
Step 2 dialog is displayed.

4. Click Finish. A Capture Status dialog appears to confirm your choices. Click OK to return to your
work in Visual Basic.

Note AFW allows you to associate References that are listed in the active Visual Basic project. This
association does not violate OLE Server application licenses because only the registration ID is stored in
the Library, not the executables.

Associating a Resource File
Visual Basic Version 4.0 now lets you externalize strings, bitmaps and other elements from your
application in a Resource File. This makes internationalization and application maintenance easier.
Before you can use a Resource File in a project, however, you must add it to your Visual Basic project
window. This is normally done by selecting Add File from the Visual Basic File menu and selecting a
Resource File from the FileOpen dialog.

AFW lets you associate a Resource File with a Project Framework in your Library so that, when you lay
out the Framework in a Visual Basic project, the Resource File is automatically copied into your project
directory and added to the project window for you. Unlike associating custom controls and OLE object
references, however, AFW does capture the physical Resource File into your Library. Thats because
there are usually no licensing issues involved with replicating Resource Files.

To associate a Resource File with an AFW Project Framework (and physically copy the file into your
Library), proceed as follows:

1. Select the Resource File to be associated in the Visual Basic project window. Because Visual
Basic lets you use only one Resource File per project, you can only associate one Resource File
per Project Framework in AFW.

2. Select AppFramework + Associate + Resource from the Visual Basic Add-Ins menu. The
Associate Resource File - Step 1 dialog is displayed.

3. Click New to associate a new Resource File or highlight an existing Resource File in the
TreeView and click Replace. The New/Replace Resource File dialog is displayed.

4. Select the Project Framework with which you want to create an association and enter a Resource
Name and a Comment and Author, if you want. Click Next. The Associate Resource File - Step
2 dialog is displayed.

5. Click Finish to execute the association. A Capture Status dialog appears to confirm your
successful capture. Click OK to return to your work in Visual Basic.

Tip Resource files are different for 16 and 32 bit environments. Provide a name or comment for the
Resource File that indicates the target environment.

Associating Files
Up to now, everything weve associated with a Project Framework corresponds with an item or reference
that you can manage directly within the Visual Basic IDE. Typically, however, these items are only a
subset of the materials relating to a development project. Other files such as bitmaps, specification
documents and readme files may also be vital to your work. AFW lets you associate these external files
with your Project Frameworks and then copy them out to your Visual Basic project directory whenever
they are needed.

For example, the AFW Professional Framework Library uses this capability to associate Excel worksheets
and Access front-ends with the OLE Server Framework included in the AFW Professional Framework
Library. When the OLE Server Framework is laid out, it can instantly be tested using Excel and Access
because the required .XLS and .MDB files are automatically copied by AFW to the proper directory on
your computer.

To associate an external File with any Project Framework (and in doing so, also copy the physical file into
your Library database), proceed as follows:

1. Select AppFramework + Associate + File from the Visual Basic Add-Ins menu. The Associate
Files - Step 1 dialog is displayed.

2. Click New to create a new association or highlight an existing file in the TreeView and click
Replace. The New/Replace File Association dialog is displayed.

3. Select a Project Framework with which you want to create an association. Provide a Template
Name. Type in the File Name to be associated or click Browse to select a file using the standard
FileOpen dialog. Add a Comment and Author name if you want, then click Next. The Associate
File - Step 2 dialog is displayed.

4. Click Finish to execute the association. A Capture Status dialog appears to confirm your
successful capture. Click OK to return to your work in Visual Basic.

Note When a Project Framework is laid out, any associated Files are placed in the directory of the active
Visual Basic project. Since these files are not tracked by the Visual Basic IDE, they do not appear in
your project window.

Adding Form, Class, and Code Templates
This topic discusses the process of adding Form, Class, and Code Templates from an AFW Library into
your active Visual Basic project. Form, Class and Code Templates correspond directly to Forms, Class
Modules and Code Modules in your project window. These Templates are added using the AFW Add
Wizards.

The Add Menus

Contents
Overview

Adding Form Templates

Adding Class Templates

Adding Code Templates

Overview
Templates are organized into Project Frameworks during the capture process. This organization serves
two purposes: (1) to help group similar Templates together; and (2) to create integrated application
frameworks.

Templates within a Framework can be individually added back into a Visual basic project using the
applicable Add Wizards. Templates can be added as a group, along with any associated items, using the
Framework Wizard.

The process of adding Form, Class, and Code Templates is identical:

1. Open the Visual Basic project to which you want to add a Template.

2. Open the Library Browser and activate the Library containing the Templates you want to add.

3. Start the appropriate Add Wizard.

4. Navigate through the available Frameworks in the Wizard and select the Template you want to
add. Click Next to proceed.

5. Confirm or modify the Name Property and File Name properties, if desired. Click Finish to add the
Template.

Modifying the Name Property, and File Name

Adding Form Templates
The Form Wizard adds Form Templates from your Library into a Visual Basic project.

To add a Form Template to your project using the Form Wizard, proceed as follows:

1. Make sure the project to which you want to add a form is open.

2. Bring up the Form Wizard by selecting AppFramework + Add + Form from the Visual Basic Add-
Ins menu. The Add Form - Step 1 dialog appears.

3. Locate the Form Template you want to add in the TreeView. This is done by expanding the
Frameworks in the TreeView to display the Form Templates contained within. You can also use
the Find facility to locate a Template.

Expanding a Form Template in the TreeView lets you view additional information about the
Template such as the Comment and Name property. Also, as you select the Template, you can
see the author and last date modified in the status bar at the bottom of the dialog.

Select the desired Form Template and click Next. The Add Form - Step 2 dialog will appear.

4. Change the File Name and/or the Name Property for the Form to be added to the values you
want to appear in your project, or accept the default values supplied from the Library. If you
change the file name, all related FRX file references (if any) will automatically be changed for
you.

Click Finish to add the Form Template to your active Visual Basic project. An Add Form status dialog is
displayed to conform your successful add. Click OK to return to your work in Visual Basic.

Adding Class Templates
 The Class Wizard is used to add Class Templates to your Visual Basic project. Bring up the Class
Wizard by selecting AppFramework + Add + Class Module. From this point, the rest of the process is
identical to that for adding Form Templates (see previous topic).

Adding Code Templates
 The Code Wizard is used to add Code Templates to your Visual Basic. Bring up the Code Wizard by
selecting AppFramework + Add + Code Module. From this point, the rest of the process is identical to that
for adding Form Templates (see previous topic).

Adding Control, Menu, and Function Templates
This topic describes how to add Control and Menu Templates to forms in a Visual Basic project, and how
to add Functions to code windows.

During the capture process, the methods for controls and menus are captured along with the object
definition. When you add Control or Menu Templates back to a project, you have the option of including
these methods or not. You can also insert a comment in the methods to help you identify code that was
automatically inserted with the items by AFW.

Another useful tool lets you instantly create copies of controls and methods. This is the Clone Controls
tool. When you clone a collection of controls, the collection does not get saved to a library. This tool is
discussed in a later topic.

Contents
Adding Controls

Adding Menus

Adding Functions

Adding Controls
The Control Wizard is used to add a Control Template or a collection of Control Templates to your project.

To add a Control Template or Control Templates Collection to a form in your active project, proceed as
follows:

1. Open the form in Visual Basic on which you want to place the Controls Collection. Make sure
the form is active and has the input focus.

2. Start the Control Wizard by selecting AppFramework + Add + Controls from the Visual Basic Add-
Ins menu. The Add Controls - Step 1 dialog appears.

3. Expand the Frameworks in the TreeView to list the Controls Collections contained within.
Expand any Collection to view the individual Control Templates contained within. To add an
entire Collection of Controls to your form, select a Collection in the TreeView and click Next. To
add an individual Control Template to your form, expand the applicable Collection node in the
TreeView, select an individual Control Template and click Next. The Add Controls - Step 2 dialog
is displayed.

Click Finish to add the control(s). The Add Controls status dialog confirms your successful capture.
Click OK to return to your work in Visual Basic.

Note You can add individual control templates that are part of a collection. To do so, open the
collection and select the desired template. Follow the wizard steps to add the individual control template.

A Collection of Control Templates

While you are in Step 1 or Step 2 the Control Wizard, you can view and modify certain Control Wizard
options by clicking on the Properties button in either dialog. The Control Properties dialog is displayed.
In this dialog, you can specify whether the methods should be included with the Control Templates you
are adding. If you include methods, you also elect to have AFW include a set of comment lines with
them. These lines will be placed in the code window before each method to help identify code that was
inserted by AFW.

Control Wizard Properties

Note When you add a Control Template to a form that requires a VBX/OCX Reference, AFW
automatically adds the Custom Control Reference to your project before it adds the control. Also: the
property TabIndex cannot be set properly due to the fact that the order controls are added may result in
erroneous settings of this property.

Adding Menus
The Menu Wizard is used to add a Menu Template or a collection of Menu Templates to your project.

To add menus to a form using the Menu Wizard:

1. Open the form in Visual Basic on which you want to place the menus. Make sure the form is
active, and has the input focus.

2. Start the Menu Wizard by selecting AppFramework + Add + Menus from the Visual Basic Add-Ins
menu. The Add Menus - Step 1 dialog is displayed.

3. Expand any Framework in the TreeView to view the Menu Collections contained within. Open
any collection to view the individual Menu Templates contained within. Select the Menus
Collection or individual Menu Template you would like to add and click Next. The Add Menus -
Step 2 dialog is displayed.

4. Click Finish to add the menu(s).

The Menu Wizard offers the same options as the Control Wizardnamely, to add methods with your menus
or not, and to add comment lines with your methods or not. As in the Control Wizard, these options can
be modified by clicking the Properties button on either the Step 1 or Step 2 dialog.

Menu Wizard Summary

Adding Functions
The Function Wizard is used to add a Function to your project.

Remember, Functions in AFW can be comprised of complete procedures or any other contiguous code
block. For example, a standard comment header that you want to appear in every module can be
captured as a Function.

To add a Function to your project using the Function Wizard:

1. Select AppFramework + Add + Function from the Visual Basic Add-Ins menu. The Add Function
- Step 1 dialog is displayed.

2. The information in the TreeView control on this dialog is organized differently than in the previous
Wizards. AFW Function Templates are global to a Library and are NOT associated with specific
Frameworks. Consequently, there are no Frameworks displayed in the TreeView. Rather,
Functions are grouped into Categories. These Categories make up the first level of the
TreeView.

3. Expand the Categories to view the Functions contained within. Select the Function you want to
add and click Next. The Add Function - Step 2 dialog is displayed.

4. The Step 2 dialog lets you view your Function before applying it and even edit it, if you want.
When you are ready, click Copy to Clipboard to paste the Function to the Windows clipboard.

Click Finish to end the Wizard. At this point, you can set the insertion point at any position in the code
window and paste your Function into the window by selecting Edit + Paste from the Visual Basic menu,
Ctl + V from the keyboard, or right mouse clicking.Tip The zoom is especially useful when viewing
functions. Highlight the tree item entitled [Code Sample] and click Zoom. The entire function can now
be viewed.

Step 1 of the Function Wizard

Just as with Control and menu Templates, you can have AFW add a set of comment lines to each
Function by setting the Function Wizard Properties. This option is available by clicking on the Properties
button in the Step 2 dialog. Comments are useful in helping you identify code that has been added from
the Library.

Applying Styles
This topic describes the process of applying Styles to Visual Basic objects using the Style Wizard.

Another tool is provided that allows you to apply styles instantly. This is the Clone Styles tool. When
you clone a style, the style is not saved to a library. This tool is discussed in a following topic.

Contents
Overview of Applying Styles

Overview of Applying Styles
During the capture process, you captured the Style from a single form or control that was selected.
When applying Styles however, you can apply them to multiple controls at the same time. Of course,
since only one form can be selected at a time, form Styles can only be applied to one form at a time.

As with the other Wizards, you must first select the object(s) you will be working with in Visual Basic
before applying a Style. Remember: Styles are collections of property settings for a particular object
class (that is, a form or a particular type of control). Therefore, they can only be applied to objects of the
same class. If you select a group of objects to which you want to apply a Style and your selection
includes objects of the wrong class, the Wizard will automatically ignore those objects in applying the
Style.

Tip When selecting forms, click on the form itself. Make sure the class name Form appears in the
drop-down in the properties window of Visual Basic.

To apply a Style to one or more Visual Basic objects using the Style Wizard:

1. Select the object(s) to which you want to apply the Style.

2. Start the Style Wizard by selecting AppFramework + Apply Styles from the Visual Basic Add-Ins
menu. The Apply Style - Step 1 dialog is displayed.

3. Like Functions, AFW Styles are global to a Library; they are NOT associated with a specific
Framework. Rather, Styles are grouped into object classes. Since you apply Styles to objects of
a particular class, this organization helps you easily locate the correct Style to apply.

4. Expand any object class in the TreeView to view all the Styles contained within. Select the
desired Style and click Next. The Apply Style - Step 2 dialog is displayed.

5. The Step 2 dialog displays a list of the properties included in the selected Style. If the list does
not look like the Style you want to use, click Back and select a different Style. If satisfied with
your selection, click Finish to apply the Style. An Apply Style status dialog is displayed to confirm
the successful application of your Style.

Note As you are applying a Style, you may receive an error message if there is an object class
mismatch between the Style and one or more of the selected objects. In such cases, AFW WILL apply the
Style to all objects of the appropriate class and skip those of the wrong the class.

A List of Available Style Control Classes

Adding an Application Framework
A Project Framework is a collection of Templates and associated references and files that can be added
to a Visual Basic project at the same time. Project Frameworks can be used to create starting
frameworks for applications, such as the MDI and SDI frameworks that ship with the AFW Professional
Frameworks Library. They can also be used to group logically related collections of components, like a
collection of forms, that typically work together in an application. Finally, they can be used to create a
particular programming environment by adding the desired custom controls, references, and basic forms
and modules. In the latter case, a Framework works much like the Autoload projects in Visual Basic.
Unlike Autoload, however, you can create as many Frameworks as you want in AFW.

Tip If you plan to create and use Frameworks as startup programming environments for Visual Basic
projects, create a Visual Basic Autoload project that is devoid of custom controls, references and modules
(Visual Basic always places a startup form in the project.) Then add a Framework to have AFW create a
starting environment for you.

Contents
Framework Items

Adding a Framework

Framework Items
An Application Framework consists of the following items that are associated with a particular Project
Template:

Form Templates

Class Templates

Code Templates

Associating Custom Controls

Associated References

Associated Resource File

Associated Files

Framework Items (except files)

As discussed earlier, Functions and Styles are global to a Library and are not part of a particular Project
Framework.

Although AFW organizes Control and Menu Templates under Project Frameworks, these objects are NOT
added to your Visual Basic projects when you lay out Frameworks. This is because controls and menus
must be contained on a form. There is no way for AFW to know which form they should be added to when
the Framework is laid out. Including Control and Menu Templates within Project Frameworks is useful for
organizing your Templates, but you must add them to projects using the Add Controls or Add Menu
Wizards.

Tip AFW seeds each Library you create with a Framework called Public Project Framework. This is the
ideal place to store Control and Menu Templates that you plan to use globally across many projects.

Adding a Framework
Adding an entire Framework to a Visual Basic project is just as easy as adding an individual Template or
applying a Style. Before you add your Framework, make sure you have opened the Visual Basic project
in which you want to place all of the Templates, Custom Controls, References, and Resource Files
contained within it. If you are working with a new project, you must save it first. This is required so AFW
knows where to place the applicable files.

An Application Framework

To add a Framework to a Visual Basic project:

1. With your project open and saved, select AppFramework + Add + Framework from the Add-Ins
menu in Visual Basic. The Add Project Framework - Step 1 dialog is displayed.

2. The TreeView displays all available Frameworks within the Active Library. As you expand each
Framework, you can review the individual Templates and Associations contained within it. You
must, however, add the entire Framework with this Wizard. If you want to add individual
Templates, you must use the corresponding Add Wizard to do so.

3. Select the Framework you want to use and click Next. The Add Project Framework - Step 2
dialog is displayed. This dialog provides guidance on what to expect in the proceeding steps.

4. Click Next. The Add project Framework - Step 3 dialog will be displayed. You have one last
chance to review the Framework contents here and either cancel or proceed.

5. Click Finish to add the Framework. A Status dialog will be displayed that itemizes the successful
addition of each object in the Framework or any errors encountered. An error condition for any
object will cause the add for that object (and only that object) to be skipped. In other words,
AFW will add everything from the Framework it can.

Note You must have the applicable custom controls or OLE automation objects installed and registered
on your system before you can add their associated references. AFW doesnt actually store or copy
these objects, it merely associates their IDs with your project.

AFW adds your Framework contents in the following order:

1. All Custom Controls and References will be added to the project.

2. All Forms, Class Modules, and Code Modules will be added to the project.

3. The Resource File will be added to the project.

4. All External Files will be placed in the active project directory.

Of course, some of these steps will be skipped if the Framework you are adding does not contain the
corresponding items.

Adding a Framework is as easy as that! This capability can be used to give any new application a real
head start. Creating and using Frameworks will pay for your investment in AFW hundreds of time over.
Remember, several time saving Frameworks from Semiotix Systems are provided in the Libraries that
ship with AFW. These are designed to be added to projects immediately and run.

Tip Always provide a Sub Main() when creating a framework. In this way you can immediately run the
project after the framework has been added.

Cloning Controls, Forms, and Styles
This topic discusses the use of AFWs cloning tools. These tools allow you to create copies of forms and
controls, including their methods, and copies of Styles without first saving them in an AFW Library.

Why would you want to do this? There may be many times as you develop applications when you need
to replicate objects or Styles within your current project, but arent sure about adding them to a Library.
Perhaps you arent sure they have longer term reusability value or your organization requires them to be
reviewed and approved before adding them to a shared Library. Cloning is the answer in these cases.
Cloning gives you virtually all the same features as capturing and applying Styles and Templates, but
without the Library storage process in between.

The Cloning tools are stand-alone tools. They operate independent of your Libraries with one exception:
when you clone a Style, the Default Style for that object class (stored in the Active Library) dictates which
properties are cloned.

Contents
Cloning Forms

Cloning Controls

Cloning Styles

Cloning Forms
Have you tried to duplicate a form in Visual Basic? This usually involves designing the form the way you
like it, doing a File + Save As in Visual Basic, quitting the project, editing the form file in a text editor, and
so on. Basically, its not an easy task. However, the AFW Cloning tool can quickly make a duplicate of
any form. Cloning a form is much like a copy-and-paste operation.

To clone a form:

1. Make sure the form you want to clone is open in your Visual Basic environment and has the input
focus. If youve made any changes to the form, be sure to save it before starting the cloning
operation.

2. Select AppFramework + Clone + Controls and Forms from the Add-Ins menu. The Clone Controls
and Forms dialog is displayed.

3. Make sure that you have tabbed to the Form page of the dialog. Click Copy Form. If the
selected form is dirty, youll get a message asking whether you want to proceed with the capture
by saving the prior version of the form (if it exists) or canceling the operation.

4. You can now provide a new name for the form and its associated file in Visual Basic. Defaults
for these names are provided by AFW. Accept these defaults or provide names of your own.
Remember that the form and file names must not conflict with names of existing forms in your
Visual Basic project or other file names on your disk.

Click the Paste Form button to complete the operation. An exact copy of the form will be added to your
Visual Basic project with the names you specified. If the form had an associated FRX file, that file will
also be cloned and all references between it and the FRM file updated.

Cloning a Form

Note The clone operation uses the physical file associated with the form. For this reason you should
save the form file before you clone it.

Cloning Controls
You might wonder why you should clone controls when Visual Basic has a perfectly good mechanism to
copy-and-paste controls. The answer is simple: when you copy-and-paste controls in Visual Basic, you
lose their methods! When you clone controls using AFW, all methods associated with the controls ARE
captured and copied to the new controls.

Cloning controls is similar to cloning forms:

1. Open a form in Visual Basic and select the controls you want to clone.

2. Select AppFramework + Clone + Controls and Forms from the Add-Ins menu. The Clone Controls
and Forms dialog is displayed.

3. Click on the Copy Controls button on the dialog. When the capture part of the cloning process is
completed, a message informs you that your controls are ready to be pasted onto another form
and the Paste Controls button will be enabled.

Select the form on which you want the controls to be placed, then return to the cloning dialog and click
Paste. An exact copy of all of the controls and their associated methods will be placed on that form.

Cloning Controls

Note Due to a limitation in the Visual Basic IDE, methods must be extracted from the physical file
associated with the form containing the controls you are cloning. For this reason you should save the
form file before you clone them.

Cloning Styles
The Clone Styles tool allows you to instantly copy and paste Styles between forms or controls.

To clone a Style:

1. Select the form or single control in Visual Basic that has the Style you want to clone.

2. Select the AppFramework + Clone + Styles from the Add-Ins menu. The Clone Styles dialog is
displayed.

3. Click on the Copy Style button. When the capture part of the cloning process is completed, a
message informs you that the Style is ready to be applied and the Paste Style button will be
enabled.

4. If you copied properties from a form, select a form then return to the Clone Styles dialog and click
Paste Style. If you copied properties for a control, select one or more controls of the same class,
then return to the Clone Styles dialog and click Paste Style. The following figure shows the tool
ready to paste a command button Style.

Tip Keep the Clone Styles tool active to quickly set properties throughout your project. Also use it when
you are going through your project to clean up forms or controls. Once you copy a Style, you can paste it
as many times as you want. If you want to clone a new Style, select the Visual Basic object and click
Copy again.

Ready to Paste a Cloned Style

Note When you clone a Style, AFW copies settings for the properties defined in the Default Style for the
control class selected. To change the Default Style, use the Library Browser.

Using Find, and Zoom
This topic discusses the Filter, Find, and Zoom utilities that are found throughout VB AppFramework.
These utilities work in conjunction with the TreeView control in the Wizards to help you manage the
Templates and Styles you will be using. The Library Browser and all Wizards have the Find and Zoom
buttons above the TreeView.

Contents
Finding Templates

Zooming on Data

Finding Templates
This utility lets you find a particular Template or Style in your Wizard lists and in the Library Browser. The
Find form is show in the figure below. Your choices for finding Templates are saved, and these choices
will be shown in the form the next time you use it.

Finding an item is simple. Type a few characters in the Find What: field and Click the Find button. In
this example, you would be looking for those characters in the Start of Field and the find utility will be
searching <All Fields> from your current location down. You can select various options in the Where:
and Search In: combo boxes to further narrow down your search. Dont worry if the TreeView is currently
collapsed. If an item you are looking for is found, the tree will expand and the found item will be
selected.

The Find Form

Zooming on Data
The zoom utility lets you view the tree data in a form. This is useful to see all of the information
contained in long fields, such as comments and code. There are two ways you can zoom on an item.

1. Click the Zoom button that is found on the top right of the trees.

2. Click your right mouse button while your cursor is over the tree and select Zoom from the pop-up
menu.

The Zoom form can be sized or maximized to view all of the data. The following figure shows the form
when zooming on a Functions code.

Zooming on a Function

In some cases the item that you are zooming on is not an actual Template, but a folder that contains
Templates. This is true when zooming on Style control classes or a Project Framework. In these cases,
the zoom form will include a list of Templates contained within that folder.

Visual Basic Integrated Development Environment. The development environment provided by Visual
Basic that allows Add-Ins to manipulate Visual Basic objects at design time.

A database that contains organized collections of templates and styles; Physically a Microsoft Access
MDB.

Optional. Typically the name of the individual that is creating the item, however this field can be used for
any arbitrary purpose.

A Template that is used to group related Templates and Associated items. All items can be applied at the
same time using the Framework Wizard. Similar to a Visual Basic project.

A group of related items, such as controls, or menus. Oftentimes there is a hierarchy of items within the
collection.

The Library that has been so selected in the browser for use. Of all of the available libraries, only one
can be active at any time.

A default group of properties for a particular class of control. This is defined for each library in the Library
Browser. This is the set of properties that is by default used when capturing and cloning styles. You
can create a Custom Style during the capture process.

A distinct kind of control that is used within Visual Basic. Each control class appears in the toolbox as a
separate item, and can be seen in the Properties window.

The process whereby an item is assigned to a particular project template. The purpose of this is to build
an application framework that can be added using the Frame Wizard.

A shell for an application, or project. Frameworks are constructed to provide accelerated starting points
for application development. They can simply be as set of references, and controls, or they can be entire
collections of forms, functions, and related files.

